Advertisements
Advertisements
प्रश्न
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
योग
उत्तर
\[\text{ Let I} = \int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[ = 2 \int 1_{II} . \tan^{- 1}_I \text{ x dx } \left[ \because \cos {}^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{- 1} x \right] \]
\[ = 2\left[ \tan^{- 1} x\int1\text{ dx } - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times\text{ x dx } \right]\]
\[ = 2 x \tan^{- 1} x - \int\frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]
\[ = 2 \int 1_{II} . \tan^{- 1}_I \text{ x dx } \left[ \because \cos {}^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{- 1} x \right] \]
\[ = 2\left[ \tan^{- 1} x\int1\text{ dx } - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times\text{ x dx } \right]\]
\[ = 2 x \tan^{- 1} x - \int\frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
`∫ cos ^4 2x dx `
` ∫ sin 4x cos 7x dx `
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int x^3 \sin x^4 dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int \log_{10} x\ dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]