हिंदी

∫ Log 10 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \log_{10} x\ dx\]
योग

उत्तर

\[\int \log_{10} x \text{ dx }\]
\[ = \int\frac{\log x}{\log 10}dx\]
\[ = \frac{1}{\log 10}\int 1_{} \cdot \text{ log x  dx }\]
`  " Taking log x as the first function and 1 as the second function " `
\[ = \frac{1}{\log 10}\left[ \log x \int\text{ 1 dx} - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\text{ 1 dx }\right\}dx \right]\]


\[ = \frac{1}{\log 10}\left[ \log x \cdot x - \int\frac{1}{x} \cdot \text{ x dx } \right]\]
\[ = \frac{1}{\log 10}\left[ x \log x - x \right] + C\]
\[ = \frac{1}{\log 10}\left[ x\left( \log x - 1 \right) \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 25 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^3 \cos x^4 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×