Advertisements
Advertisements
प्रश्न
\[\int\sqrt{2x - x^2} \text{ dx}\]
योग
उत्तर
\[I = \int\sqrt{2x - x^2}\text{ dx}\]
\[ = \int\sqrt{x\left( 2 - x \right)}\text{ dx}\]
\[ = \int\sqrt{x\left( 2 - x \right)}\text{ dx}\]
Let
\[x = 1 + \ sin\ u\]
\[or, dx = \cos\ u\ du\]
\[ \Rightarrow I = \int\sqrt{\left( 1 + \sin u \right)\left( 1 - \sin u \right)}\ cos\ u\ du\]
\[ \Rightarrow I = \int \cos^2 u\ du\]
\[ \Rightarrow I = \frac{1}{2}\int\left( \cos2u + 1 \right)du\]
\[ \Rightarrow I = \int\sqrt{\left( 1 + \sin u \right)\left( 1 - \sin u \right)}\ cos\ u\ du\]
\[ \Rightarrow I = \int \cos^2 u\ du\]
\[ \Rightarrow I = \frac{1}{2}\int\left( \cos2u + 1 \right)du\]
\[\Rightarrow I = \frac{1}{2}\left( \frac{1}{2}\sin 2u + u \right) + c\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \cos u + u \right) + c\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \sqrt{1 - \sin^2 u} + u \right) + c\]
\[ \therefore I = \frac{1}{2}\left( x - 1 \right)\sqrt{2x - x^2} + \frac{1}{2} \sin^{- 1} \left( x - 1 \right) + c \left[ \because u = \sin^{- 1} \left( x - 1 \right) \right]\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \cos u + u \right) + c\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \sqrt{1 - \sin^2 u} + u \right) + c\]
\[ \therefore I = \frac{1}{2}\left( x - 1 \right)\sqrt{2x - x^2} + \frac{1}{2} \sin^{- 1} \left( x - 1 \right) + c \left[ \because u = \sin^{- 1} \left( x - 1 \right) \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]