हिंदी

∫ 1 1 + 2 Cos X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{1}{1 + 2 \cos x}dx \]

\[\text{ Putting cos  x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]

\[ \therefore I = \int\frac{1}{1 + 2 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{1 + \tan^2 \frac{x}{2} + 2 - 2 \tan^2 \frac{x}{2}}dx\]

\[ = \int\frac{\sec^2 \frac{x}{2}}{3 - \tan^2 \frac{x}{2}}dx\]

\[\text{  Putting  tan }\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) \text{ dx} = dt\]

\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \cdot dx = 2dt\]

\[ \therefore I = \int\frac{2}{3 - t^2} \text{  dt }\]

\[ = 2\int\frac{1}{\left( \sqrt{3} \right)^2 - t^2}dt\]

\[ = 2 \times \frac{1}{2\sqrt{3}} \text{ ln }\left| \frac{\sqrt{3} + t}{\sqrt{3} + t} \right| + C ........\left[ \because \int\frac{1}{a^2 - x^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{a + x}{a - x} \right| + C \right]\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{\sqrt{3} + \tan\frac{x}{2}}{\sqrt{3} - \tan \frac{x}{2}} \right| + C...................\left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 64 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×