हिंदी

∫ √ 1 − Sin 2 X 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
योग

उत्तर

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}}dx\]

\[ = \int\sqrt{\frac{\cos^2 x + \sin^2 x - 2 \sin x \cos x}{\cos^2 x + \sin^2 x + 2 \sin x \cos x}} dx\]

\[ = \sqrt{\frac{\left( \cos x - \sin x \right)^2}{\left( \cos x + \sin x \right)^2}}dx\]

\[ = \int\frac{\cos x - \sin x}{\cos x + \sin x}dx\]

\[ = \int\frac{1 - \tan x}{1 + \tan x}dx\]

\[ = \int\tan \left( \frac{\pi}{4} - x \right)dx\]

\[ = \frac{1}{- 1}\text{ln}\left| \sec \left( \frac{\pi}{4} - x \right) \right| \left[ \because \int\tan \left( ax + b \right)dx = \frac{1}{a}\text{ln }\left| \sec \left( ax + b \right) \right| + C \right]\]

\[ = \frac{- \text{In} \left| \text{cos} \left( \frac{\pi}{4} - x \right) \right|}{- 1} + C\]

\[ = \text{ln }\left| \text{cos} \left( \frac{\pi}{4} - x \right) \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 11 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

`∫     cos ^4  2x   dx `


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int \log_{10} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×