हिंदी

Find ∫ 2 X ( X 2 + 1 ) ( X 2 + 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
योग

उत्तर

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\text{Let }x^2 = y\]
\[ \Rightarrow 2xdx = dy\]
\[ \Rightarrow dx = \frac{dy}{2x}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[ = \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2}\]
\[\text{Let }\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{A}{y + 1} + \frac{B}{y + 2} + \frac{C}{\left( y + 2 \right)^2} . . . . . \left( 1 \right)\]
\[ \Rightarrow 1 = A \left( y + 2 \right)^2 + B\left( y + 1 \right)\left( y + 2 \right) + C\left( y + 1 \right) . . . . . \left( 2 \right)\]
\[\text{Putting y = - 2 in (2)}\]
\[1 = C\left( - 2 + 1 \right)\]
\[ \Rightarrow C = - 1\]

\[\text{Putting y = - 1 in (2)}\]
\[1 = A \left( - 1 + 2 \right)^2 \]
\[ \Rightarrow 1 = A\left( 1 \right)\]
\[ \Rightarrow A = 1\]

\[\text{Putting y = 0 in (2)}\]
\[1 = 4A + B\left( 2 \right) + C\]
\[ \Rightarrow 1 = 4 + 2B - 1\]
\[ \Rightarrow 1 = 3 + 2B\]
\[ \Rightarrow - 2 = 2B\]
\[ \Rightarrow B = - 1\]

\[\text{Substituting the values of A, B and C in (1)}\]

\[\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{1}{y + 1} - \frac{1}{y + 2} - \frac{1}{\left( y + 2 \right)^2}\]
\[ \Rightarrow \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2} = \int\frac{dy}{y + 1} - \int\frac{dy}{y + 2} - \int\frac{dy}{\left( y + 2 \right)^2}\]
\[ = \log\left| y + 1 \right| - \log\left| y + 2 \right| + \frac{1}{y + 2} + C\]

\[\text{Hence, }\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx= \log\left| x^2 + 1 \right| - \log\left| x^2 + 2 \right| + \frac{1}{x^2 + 2} + C\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 56 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^\sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×