हिंदी

∫ 5 ( X 2 + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{5 dx}{\left( x^2 + 1 \right) \left( x + 2 \right)}\]

\[\text{Let }\frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 2 \right)}{\left( x + 2 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow 5 = A \left( x^2 + 1 \right) + B x^2 + 2Bx + Cx + 2C\]

\[ \Rightarrow 5 = \left( A + B \right) x^2 + \left( 2B + C \right) x + \left( A + 2C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[2B + C = 0 . . . . . \left( 2 \right)\]

\[A + 2C = 5 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 1\]

\[B = - 1\]

\[C = 2\]

\[ \therefore \frac{5}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \frac{1}{x + 2} + \left( \frac{- x + 2}{x^2 + 1} \right)\]

\[ \Rightarrow \int\frac{5 dx}{\left( x + 2 \right) \left( x^2 + 1 \right)} = \int\frac{dx}{x + 2} - \int\frac{x dx}{x^2 + 1} + 2\int\frac{dx}{x^2 + 1}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2xdx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \int\frac{dx}{x + 2} - \frac{1}{2}\int\frac{dt}{t} + 2\int\frac{dx}{x^2 + 1^2}\]

\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| t \right| + 2 \tan^{- 1} x + C'\]

\[ = \log \left| x + 2 \right| - \frac{1}{2} \log \left| x^2 + 1 \right| + 2 \tan^{- 1} x + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 36 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×