हिंदी

∫ X ( X + 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow x = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]

\[ \Rightarrow x = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[B + C = 1 . . . . . \left( 2 \right)\]

\[A + C = 0 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = - \frac{1}{2}\]

\[B = \frac{1}{2}\]

\[C = \frac{1}{2}\]

\[ \therefore \frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = - \frac{1}{2 \left( x + 1 \right)} + \frac{\frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]

\[ \Rightarrow \int\frac{x dx}{\left( x + 1 \right) \left( x^2 + 1 \right)} = - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[ = - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} x + C'\]

\[ = - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 37 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×