Advertisements
Advertisements
प्रश्न
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
योग
उत्तर
` Note: "Here, we are considering " log x as log_e x `
\[\text{Let I} = \int\frac{x + 1}{x\left( x + \ logx \right)}dx\]
\[\text{Putting}\ x + \log x = t\]
\[ \Rightarrow 1 + \frac{1}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{x + 1}{x}dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log }\left| t \right| + C\]
\[ = \text{log }\left| x + \log x \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int \log_{10} x\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int \tan^3 x\ dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]