Advertisements
Advertisements
प्रश्न
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
योग
उत्तर
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\text{Let 2 + 3 }\log x = t\]
\[ \Rightarrow \frac{3}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = \frac{dt}{3}\]
Now, \[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[ = \frac{1}{3}\int \text{sin t dt}\]
\[ = \frac{1}{3} \left[ - \text{cos t }\right] + C\]
\[ = - \frac{1}{3}\text{cos }\left( \text{2 + 3 log x }\right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int \cos^2 \text{nx dx}\]
` ∫ cos 3x cos 4x` dx
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
` ∫ sec^6 x tan x dx `
` ∫ tan^5 x dx `
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x \cos^2 x\ dx\]
` ∫ x tan ^2 x dx
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]