हिंदी

∫ Sin ( 2 + 3 Log X ) X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
योग

उत्तर

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\text{Let 2 + 3 }\log x = t\]
\[ \Rightarrow \frac{3}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = \frac{dt}{3}\]
Now, \[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[ = \frac{1}{3}\int \text{sin t dt}\]
\[ = \frac{1}{3} \left[ - \text{cos t }\right] + C\]
\[ = - \frac{1}{3}\text{cos }\left( \text{2 + 3 log x }\right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 58 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  sec^6   x  tan    x   dx `

` ∫      tan^5    x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \cos^2 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×