Advertisements
Advertisements
प्रश्न
\[\int \sin^4 x \cos^3 x \text{ dx }\]
योग
उत्तर
∫ sin4 x cos3 x dx
= ∫ sin4 x . cos2 x cos x dx
= ∫ sin4 x . (1 – sin2 x ) cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ sin4 x . (1 – sin2 x ) cos x dx
= ∫ t4 (1 – t2) dt
= ∫ (t4 – t6) dt
\[= \frac{t^5}{5} - \frac{t^7}{7} + C\]
\[ = \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]