हिंदी

∫ X √ 1 − X 1 + X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
योग

उत्तर

\[\text{We have},\]
\[I = \int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[ \Rightarrow I = \int x\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} \text{ dx }\]
\[ \Rightarrow I = \int x\frac{\left( 1 - x \right)}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{x - x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{x - x^2 - 1 + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\frac{- x^2 + 1}{\sqrt{1 - x^2}} dx + \int\frac{x - 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \int\sqrt{1 - x^2} dx + \int\frac{x}{\sqrt{1 - x^2}} dx - \int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
\[ \Rightarrow I = \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} \left( x \right) + C_1 - \sqrt{1 - x^2} + C_2 - \sin^{- 1} \left( x \right) + C_3 ....................\left[ \because \int\frac{x}{\sqrt{1 - x^2}}\text{  dx }= - \sqrt{1 - x^2} + C_2 \right]\]
\[ \Rightarrow I = \sqrt{1 - x^2}\left( \frac{x}{2} - 1 \right) - \frac{1}{2} \sin^{- 1} \left( x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 105 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×