हिंदी

∫ √ 1 + 2 X − 3 X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]
योग

उत्तर

\[\int\sqrt{1 + 2x - 3 x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{2}{3}x - x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left( x^2 - \frac{2}{3}x \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left\{ x^2 - \frac{2}{3}x + \left( \frac{1}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \right\}}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{1}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{4}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3} \left[ \frac{\left( x - \frac{1}{3} \right)}{2} \sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2} + \frac{\left( \frac{2}{3} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{1}{3}}{\frac{2}{3}} \right) \right] + C ................................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{3x - 1}{6} \right) \sqrt{1 + 2x - 3 x^2} + \frac{2\sqrt{3}}{9} \sin^{- 1} \left( \frac{3x - 1}{2} \right) + C\]   
 
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 88 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×