Advertisements
Advertisements
प्रश्न
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
योग
उत्तर
\[\int\sqrt{1 + 2x - 3 x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{2}{3}x - x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left( x^2 - \frac{2}{3}x \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left\{ x^2 - \frac{2}{3}x + \left( \frac{1}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \right\}}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{1}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{4}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3} \left[ \frac{\left( x - \frac{1}{3} \right)}{2} \sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2} + \frac{\left( \frac{2}{3} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{1}{3}}{\frac{2}{3}} \right) \right] + C ................................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{3x - 1}{6} \right) \sqrt{1 + 2x - 3 x^2} + \frac{2\sqrt{3}}{9} \sin^{- 1} \left( \frac{3x - 1}{2} \right) + C\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{2}{3}x - x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left( x^2 - \frac{2}{3}x \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left\{ x^2 - \frac{2}{3}x + \left( \frac{1}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \right\}}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{1}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{4}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3} \left[ \frac{\left( x - \frac{1}{3} \right)}{2} \sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2} + \frac{\left( \frac{2}{3} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{1}{3}}{\frac{2}{3}} \right) \right] + C ................................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{3x - 1}{6} \right) \sqrt{1 + 2x - 3 x^2} + \frac{2\sqrt{3}}{9} \sin^{- 1} \left( \frac{3x - 1}{2} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sin^5 x\ dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]