हिंदी

∫ √ X 1 − X D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to

विकल्प

  • \[\sin^{- 1} \sqrt{x} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x} - \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
MCQ

उत्तर

\[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
 
 
\[\text{Let }I = \int\sqrt{\frac{x}{1 - x}}dx\]

\[\text{Putting }\sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \cos \theta d\theta\]

\[ \Rightarrow dx = \sin \left( 2\theta \right) d\theta\]

\[ \therefore I = \int\sqrt{\frac{\sin^2 \theta}{1 - \sin^2 \theta}} \times \sin \left( 2\theta \right) \cdot d\theta\]

\[ = \int\frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cdot \cos \theta d\theta\]

\[ = \int2 \sin^2 \theta \cdot d\theta\]

\[ = \int\left( 1 - \cos 2\theta \right)d\theta\]

\[ = \theta - \frac{\sin \left( 2\theta \right)}{2} + C\]

\[ = \theta - \frac{2 \sin \theta \cos \theta}{2} + C \]

\[ = \theta - \sin \theta \sqrt{1 - \sin^2 \theta} + C\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x} \sqrt{1 - x} + C ...........\left( \because \theta = \sin^{- 1} \sqrt{x} \right)\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x\left( 1 - x \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 26 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \cot^4 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×