हिंदी

∫ X ( X 2 + 4 ) √ X 2 + 9 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int\frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x \text{ dx } = dt\]
\[ \Rightarrow x \text{ dx} = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t + 4 \right) \sqrt{t + 9}}\]
\[\text{ Again Putting  t} + 9 = u^2 \]
\[ \Rightarrow dt = 2u\text{  du }\]
\[ \therefore I = \frac{1}{2}\int\frac{2u \text{ du}}{\left( u^2 - 9 + 4 \right) u}\]
\[ = \int\frac{du}{u^2 - 5}\]
\[ = \int\frac{du}{u^2 - \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{u - \sqrt{5}}{u + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{\sqrt{t + 9} - \sqrt{5}}{\sqrt{t + 9} + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log} \left| \frac{\sqrt{x^2 + 9} - \sqrt{5}}{\sqrt{x^2 + 9} + \sqrt{5}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 14 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×