हिंदी

∫ 1 1 − X − 4 X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int\frac{1}{1 - x - 4 x^2}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - - x^2 \frac{x}{4}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x^2 + \frac{x}{4} \right)}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left\{ x^2 + + \left( \frac{1}{8} \right)^2 - \left( \frac{1}{8} \right)^2 \frac{x}{4} \right\}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x + \frac{1}{8} \right)^2 + \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} + - \left( x + \frac{1}{8} \right)^2 \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{16 + 1}{64} - \left( x + \frac{1}{8} \right)^2}dx\]


\[ = \frac{1}{4}\int\frac{1}{\left( \frac{\sqrt{17}}{8} \right)^2 - \left( x + \frac{1}{8} \right)^2}dx\]
\[ = \frac{1}{4} \times \frac{1}{2 \times \frac{\sqrt{17}}{8}} \text{ ln }\left| \frac{\frac{\sqrt{17}}{8} + x + \frac{1}{8}}{\frac{\sqrt{17}}{8} - x - \frac{1}{8}} \right| + C .................\left[ \because \int\frac{1}{a^2 - x^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{a + x}{a - x} \right| + C \right]\]
\[ = \frac{1}{\sqrt{17}} \text{ ln }\left| \frac{\frac{\sqrt{17} + 1}{8} + x}{\frac{\sqrt{17} - 1}{8} - x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 46 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×