English

∫ 1 1 − X − 4 X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int\frac{1}{1 - x - 4 x^2}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - - x^2 \frac{x}{4}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x^2 + \frac{x}{4} \right)}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left\{ x^2 + + \left( \frac{1}{8} \right)^2 - \left( \frac{1}{8} \right)^2 \frac{x}{4} \right\}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x + \frac{1}{8} \right)^2 + \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} + - \left( x + \frac{1}{8} \right)^2 \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{16 + 1}{64} - \left( x + \frac{1}{8} \right)^2}dx\]


\[ = \frac{1}{4}\int\frac{1}{\left( \frac{\sqrt{17}}{8} \right)^2 - \left( x + \frac{1}{8} \right)^2}dx\]
\[ = \frac{1}{4} \times \frac{1}{2 \times \frac{\sqrt{17}}{8}} \text{ ln }\left| \frac{\frac{\sqrt{17}}{8} + x + \frac{1}{8}}{\frac{\sqrt{17}}{8} - x - \frac{1}{8}} \right| + C .................\left[ \because \int\frac{1}{a^2 - x^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{a + x}{a - x} \right| + C \right]\]
\[ = \frac{1}{\sqrt{17}} \text{ ln }\left| \frac{\frac{\sqrt{17} + 1}{8} + x}{\frac{\sqrt{17} - 1}{8} - x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 46 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×