Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{2x + 3}{\left( x - 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x - 2 + 2 + 3}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( x - 1 \right) + 5}{\left( x - 1 \right)^2} \right]dx\]
\[ = 2\int\frac{dx}{\left( x - 1 \right)} + 5\int \left( x - 1 \right)^{- 2} dx\]
\[ = \text{2 ln }\left| x - 1 \right| + 5\left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \text{2 ln }\left| x - 1 \right| - \frac{5}{x - 1} + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Integrate the following integrals:
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
Find: `int (3x +5)/(x^2+3x-18)dx.`