English

∫ 2 X + 3 ( X − 1 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
Sum

Solution

\[\int\left( \frac{2x + 3}{\left( x - 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x - 2 + 2 + 3}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( x - 1 \right) + 5}{\left( x - 1 \right)^2} \right]dx\]
\[ = 2\int\frac{dx}{\left( x - 1 \right)} + 5\int \left( x - 1 \right)^{- 2} dx\]
\[ = \text{2   ln }\left| x - 1 \right| + 5\left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \text{2 ln }\left| x - 1 \right| - \frac{5}{x - 1} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.04 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.04 | Q 4 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


` ∫   cos  3x   cos  4x` dx  

` ∫    cos  mx  cos  nx  dx `

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^4 2x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×