Advertisements
Advertisements
Question
Find: `int (3x +5)/(x^2+3x-18)dx.`
Sum
Solution
Let `I = int ((3x+5))/(x^2 +3x -18)dx`
`I = int ((3x+5)dx)/((x+6) (x-3))`
let `(3x+5)/((x+6) (x-3)) = "A"/(x+6) + "B"/(x-3)`
so 3x + 5 = A (x -3) + B (x +6)
On comparing,
A + B = 3 ...(i)
-3A + 6B = 5 ...(ii)
-3A + 6(3 - A) = 5
-3A + 18 - 6A = 5
`"A" = -13/-9 = 13/9 and "B" = 3 - "A" = 3 - 13/9 = 14/9`
So, `int ((3x+5)dx)/((x+6)(x-3)) = int (13dx)/(9(x+6)) + int(14dx)/(9(x-3))`
= `13/9 "In" (x+6)+14/9"In"(x-3) + "C"`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]