Advertisements
Advertisements
Question
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
Sum
Solution
\[\int\left( \frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} \right)dx\]
\[ = \int \frac{x^2 \left( 5 x^2 + 12x + 7 \right)}{x\left( x + 1 \right)}dx\]
`= ∫ x {( 5 x^2 + 5x + 7x + 7 )}/{( x + 1 )}`
\[ = \int\frac{x\left( 5x\left( x + 1 \right) + 7\left( x + 1 \right) \right)}{\left( x + 1 \right)}dx\]
` = ∫ x{ ( 5x + 7 )( x + 1 )}/{( x + 1 )}dx`
\[ = \int\left( 5 x^2 + 7x \right)dx\]
\[ = \frac{5 x^3}{3} + \frac{7 x^2}{2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \cot^6 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]