Advertisements
Advertisements
Question
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
Sum
Solution
Let I =
\[\int\] (tan–1 x2) x dx
Putting x2 = t
⇒ 2x dx = dt
Putting x2 = t
⇒ 2x dx = dt
\[\Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int 1_{II} . \tan^{- 1_I} t . dt\]
\[ = \frac{1}{2} \tan^{- 1} t\int1 \text{ dt }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int1 dt \right\}dt\]
\[ = \frac{1}{2} \left[ \tan^{- 1} t . t - \int \frac{t}{1 + t^2}dt \right]\]
\[\text{ Now putting }\ 1 + t^2 = p\]
\[ \Rightarrow \text{ 2t dt }= dp\]
\[ \Rightarrow \text{ t dt} = \frac{dp}{2}\]
\[ \therefore I = \frac{1}{2}t . \tan^{- 1} t - \frac{1}{2}\int \frac{t dt}{1 + t^2}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{2 x^2} \int \frac{dp}{p}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{4}\ln p + C\]
\[ = \frac{x^2 . \tan^{- 1} x^2}{2} - \frac{1}{4} \text{ ln }\left| 1 + x^4 \right| + C \left[ \because p = 1 + t^2 \right]\]
\[ \therefore I = \frac{1}{2}\int 1_{II} . \tan^{- 1_I} t . dt\]
\[ = \frac{1}{2} \tan^{- 1} t\int1 \text{ dt }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int1 dt \right\}dt\]
\[ = \frac{1}{2} \left[ \tan^{- 1} t . t - \int \frac{t}{1 + t^2}dt \right]\]
\[\text{ Now putting }\ 1 + t^2 = p\]
\[ \Rightarrow \text{ 2t dt }= dp\]
\[ \Rightarrow \text{ t dt} = \frac{dp}{2}\]
\[ \therefore I = \frac{1}{2}t . \tan^{- 1} t - \frac{1}{2}\int \frac{t dt}{1 + t^2}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{2 x^2} \int \frac{dp}{p}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{4}\ln p + C\]
\[ = \frac{x^2 . \tan^{- 1} x^2}{2} - \frac{1}{4} \text{ ln }\left| 1 + x^4 \right| + C \left[ \because p = 1 + t^2 \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
` ∫ sin 4x cos 7x dx `
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x \cos^2 x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]