English

∫ 8 Cot X + 1 3 Cot X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]
Sum

Solution

\[\text{ Let I} = \int\left( \frac{8 \cot x + 1}{3 \cot x + 2} \right)dx\]
\[ = \int\left( \frac{8 \frac{\cos x}{\sin x} + 1}{\frac{3 \cos x}{\sin x} + 2} \right)dx\]
\[ = \int\left( \frac{8 \cos x + \sin x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Now, let 8  cos x + sin x = A }\left( 3 \cos x + 2 \sin x \right) + B \left( - 3 \sin x + 2 \cos x \right) . . . (1) \]
\[ \Rightarrow 8 \cos x + \sin x = 3A \cos x + 2A \sin x - 3B \sin x + 2B \cos x \]
\[ \Rightarrow 8 \cos x + \sin x = \left( 3A + 2B \right) \cos x + \left( 2A - 3B \right) \sin x \]
\[\text{Equating the coefficients of like terms we get}, \]
\[2A - 3B = 1 . . . \left( 2 \right)\]
\[3A + 2B = 8 . . . \left( 3 \right)\]

Solving eq (2) and  eq (3) we get,
A = 2, B = 1
Thus, by substituting the values of A and B in eq (1) we get ,

\[I = \int\left[ \frac{2 \left( 3 \cos x + 2 \sin x \right) + 1\left( - 3 \sin x + 2 \cos x \right)}{\left( 3 \cos x + 2 \sin x \right)} \right]dx\]
\[ = 2\int\left( \frac{3 \cos x + 2 \sin x}{3 \cos x + 2 \sin x} \right)dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[ = 2\int dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Putting   3 cos x + 2 sin x = t }\]
\[ \Rightarrow \left( \text{  - 3  sin x + 2 cos x} \right)dx = dt \]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| t \right| + C\]
\[ = 2x + \text{ ln }\left| 3 \cos x + 2 \sin x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 10 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×