Advertisements
Advertisements
Question
\[\int \tan^4 x\ dx\]
Sum
Solution
\[\text{ Let I } = \int \text{ tan}^4 \text{ x dx }\]
\[ = \int \tan^2 x \cdot \tan^2 \text{ x dx}\]
\[ = \int\left( \sec^2 x - 1 \right) \tan^2 \text{ x dx}\]
\[ = \int \sec^2 x \cdot \tan^2\text{ x dx }- \int \tan^2 \text{ x dx}\]
\[ = \int \tan^2 x \cdot \sec^2 x - \int\left( \sec^2 x - 1 \right) dx\]
\[\text{ Putting tan x } = \text{ t in the Ist integral}\]
\[ \Rightarrow \sec^2 \text{ x dx } = dt\]
\[ \therefore I = \int t^2 \cdot dt - \int\left( \sec^2 x - 1 \right) dx\]
\[ = \frac{t^3}{3} - \tan x + x + C\]
\[ = \frac{\tan^3 x}{3} - \text{ tan x + x + C }..............\left( \because t = \tan x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
` ∫ tan^3 x sec^2 x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]