English

∫ E X ( 1 − X ) 2 ( 1 + X 2 ) 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
Sum

Solution 1

\[\text{We have}, \]

\[I = \int\frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[ = \int\frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[ = \int e^x \left[ \frac{\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right] \text{ dx }\]

\[ = \int e^x \left( \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right) \text{ dx }\]

\[ = \frac{e^x}{1 + x^2} + C.......................[ ∵  \int e^x { f  ( x ) + f' ( x ) }  \text{ dx }= e^x f( x ) + C\]`   \text{  Where} ,ƒ  (x } =   1/{1+2} ⇒ ƒ ^'  (x )  = -  {2x}/ (1+ x^2)^2 ]`

 

 

shaalaa.com

Solution 2

\[\text{We have}, \]

\[I = \int\frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} dx\]

\[ = \int\frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2} dx\]

\[ = \int e^x \left[ \frac{\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right] dx\]

\[ = \int e^x \left( \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right) dx\]

\[ = \frac{e^x}{1 + x^2} + C \left[ \because \int e^x \left\{ f\left( x \right) + f'left( x \right) \right\} dx = e^x f\left( x \right) + C\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 120 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×