English

∫ 1 Cos X ( 5 − 4 Sin X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
Sum

Solution

We have,
\[I = \int\frac{dx}{\cos x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\cos^2 x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin^2 x \right) \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin x \right) \left( 1 + \sin x \right) \left( 5 - 4 \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[\text{Let }\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{5 - 4t}\]
\[ \Rightarrow \frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[ \Rightarrow 1 = A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)\]
\[\text{Putting 1 + t = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = B\left( 2 \right) \left( 5 + 4 \right)\]
\[B = \frac{1}{18}\]
\[\text{Putting 1 - t = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 - 4 \right) + B \times 0 + C \times 0\]
\[A = \frac{1}{2}\]
\[\text{Putting 5 - 4t = 0}\]
\[ \Rightarrow 4t = 5\]
\[ \Rightarrow t = \frac{5}{4}\]
\[1 = C \left( 1 - \frac{5}{4} \right) \left( 1 + \frac{5}{4} \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{4} \right) \left( \frac{9}{4} \right)\]
\[ \Rightarrow C = - \frac{16}{9}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{1 - t} + \frac{1}{18}\int\frac{dt}{1 + t} - \frac{16}{9}\int\frac{dt}{5 - 4t}\]
\[ = \frac{1}{2} \frac{\log \left| 1 - t \right|}{- 1} + \frac{1}{18} \log \left| 1 + t \right| - \frac{16}{9} \times \frac{\log \left| 5 - 4t \right|}{- 4} + C\]
\[ = \frac{1}{18} \log \left| 1 + t \right| - \frac{1}{2} \log \left| 1 - t \right| + \frac{4}{9}\log \left| 5 - 4t \right| + C\]
\[ = \frac{1}{18} \log \left| 1 + \sin x \right| - \frac{1}{2} \log \left| 1 - \sin x \right| + \frac{4}{9} \log \left| 5 - 4 \sin x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 59 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×