English

∫ 1 Sin X ( 3 + 2 Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
Sum

Solution

We have,
\[I = \int\frac{dx}{\sin x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\sin^2 x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos^2 x \right) \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 3 + 2 \cos x \right)}\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[ \therefore I = \int\frac{- dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 3 + 2t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3 + 2t}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)\]
\[\text{Putting t + 1 = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = A \times 0 + B \left( - 2 \right) \left( 3 - 2 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( - 2 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{Putting t - 1 = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 \right) + B \times 0 + C \times 0\]
\[ \Rightarrow A = \frac{1}{10}\]
\[\text{Putting 3 + 2t = 0}\]
\[ \Rightarrow t = - \frac{3}{2}\]
\[1 = A \times 0 + B \times 0 + C \left( - \frac{3}{2} + 1 \right) \left( - \frac{3}{2} - 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{2} \right) \left( - \frac{5}{2} \right)\]
\[C = \frac{4}{5}\]
Then,
\[I = \frac{1}{10}\int\frac{dt}{t - 1} - \frac{1}{2}\int\frac{dt}{t + 1} + \frac{4}{5}\int\frac{dt}{3 + 2t}\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{4}{5} \times \frac{\log \left| 3 + 2t \right|}{2} + C\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{2}{5}\log \left| 3 + 2t \right| + C\]
\[ = \frac{1}{10} \log \left| \cos x - 1 \right| - \frac{1}{2} \log \left| \cos x + 1 \right| + \frac{2}{5} \log \left| 3 + 2 \cos x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 60 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×