English

∫ X 2 Sin − 1 X ( 1 − X 2 ) 3 / 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \frac{x^2 . \sin^{- 1} x dx}{\left( 1 - x^2 \right)^\frac{3}{2}}\]
\[\text{ Putting  x } = \sin \theta \]
\[ \Rightarrow dx = \cos \text{  θ   dθ } \]
\[\text{and} \theta = \sin^{- 1} x\]
\[ \therefore I = \int \frac{\sin^2 \theta . \theta . \cos \theta \text{ dθ }}{\left( 1 - \sin^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{  θ   dθ }}{\left( \cos^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{  θ   dθ } }{\cos^3 \theta}\]
\[ = \int \tan^2 \theta . \text{  θ   dθ } \]
\[ = \int \left( \sec^2 \theta - 1 \right)\theta . d\theta\]
\[ = \int \theta_I . \sec^2_{II} \text{  θ   dθ } - \int \theta . d\theta\]
\[ = \theta\int \sec^2 \text{  θ   dθ }  - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int \sec^2 \text{  θ   dθ } \right\}d\theta - \int \theta . d\theta\]
\[ = \theta \tan \theta - \int 1 . \tan\text{  θ   dθ }  - \frac{\theta^2}{2}\]
\[ = \theta . \tan \theta - \text{ ln }\left| \sec \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \cos \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \sqrt{1 - \sin^2 \theta} \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{\theta . \sin \theta}{\sqrt{1 - \sin^2 \theta}} + \frac{1}{2}\text{ ln} \left| 1 - \sin^2 \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} + \frac{1}{2}\text{  ln }\left( 1 - x^2 \right) - \frac{1}{2} \left( \sin^{- 1} x \right)^2 + C \left[ \because \theta = \sin^{- 1} x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 60 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×