English

∫ 1 ( X + 1 ) 2 ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A \left( x + 1 \right) \left( x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^3 + x + x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right)\left( x^2 + 2x + 1 \right)\]

\[ \Rightarrow 1 = A \left( x^3 + x^2 + x + 1 \right) + B \left( x^2 + 1 \right) + C x^3 + 2C x^2 + Cx + D x^2 + 2Dx + D\]

\[ \Rightarrow 1 = \left( A + C \right) x^3 + \left( A + B + 2C + D \right) x^2 + \left( A + C + 2D \right) x + A + B + D\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 . . . . . \left( 1 \right)\]

\[A + B + 2C + D = 0 . . . . . \left( 2 \right)\]

\[A + C + 2D = 0 . . . . . \left( 3 \right)\]

\[A + B + D = 1 . . . . . \left( 4 \right)\]

\[A = \frac{1}{2}, B = \frac{1}{2}, C = - \frac{1}{2}\text{ and }D = 0\]

\[ \therefore \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{1}{2 \left( x + 1 \right)^2} - \frac{1}{2} \times \frac{x}{x^2 + 1}\]

\[ \Rightarrow \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{2}\int\frac{x dx}{x^2 + 1}\]

\[\text{Putting }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{4}\int\frac{dt}{t}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| t \right| + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| x^2 + 1 \right| + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 39 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×