Advertisements
Advertisements
Question
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Solution
\[\text{ Let I }= \int\frac{x^3}{\sqrt{x^8 + 2^2}}dx\]
\[ = \int\frac{x^3}{\sqrt{\left( x^4 \right)^2 + 2^2}}dx\]
\[\text{ Putting x}^4 = t\]
\[ \Rightarrow 4 x^3 \text{ dx }= dt\]
\[ \Rightarrow x^3 \cdot dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{1}{\sqrt{t^2 + 2^2}}dt\]
\[ = \frac{1}{4} \text{ ln} \left| t + \sqrt{t^2 + 4} \right| + C\]
\[ = \frac{1}{4} \text{ ln }\left| x^4 + \sqrt{x^8 + 4} \right| + C ...........\left[ \because t = x^4 \right]\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to