English

∫ X 3 √ X 8 + 4 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]

Sum

Solution

\[\text{ Let  I }= \int\frac{x^3}{\sqrt{x^8 + 2^2}}dx\]
\[ = \int\frac{x^3}{\sqrt{\left( x^4 \right)^2 + 2^2}}dx\]
\[\text{ Putting  x}^4 = t\]
\[ \Rightarrow 4 x^3 \text{ dx }= dt\]
\[ \Rightarrow x^3 \cdot dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{1}{\sqrt{t^2 + 2^2}}dt\]
\[ = \frac{1}{4} \text{ ln} \left| t + \sqrt{t^2 + 4} \right| + C\]
\[ = \frac{1}{4} \text{ ln }\left| x^4 + \sqrt{x^8 + 4} \right| + C ...........\left[ \because t = x^4 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 61 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×