Advertisements
Advertisements
Question
\[\int\frac{1}{x^2 + 6x + 13} dx\]
Sum
Solution
\[\int\frac{dx}{x^2 + 6x + 13}\]
\[ = \int\frac{dx}{x^2 + 2 \times x \times 3 + 9 - 9 + 13}\]
\[ = \int\frac{dx}{\left( x + 3 \right)^2 + 2^2}\]
\[ = \frac{1}{2} \tan^{- 1} \left( \frac{x + 3}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^5 x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int \tan^4 x\ dx\]
\[\int x^2 \tan^{- 1} x\ dx\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .