English

∫ 1 2 X 2 − X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{2 x^2 - x - 1} dx\]
Sum

Solution

\[\int\frac{dx}{2 x^2 - x - 1}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{x^2 - \frac{x}{2} + \left( \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \frac{1}{16} - \frac{1}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{1 + 8}{16} \right)}\]
\[ = \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{4} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[\text{ let x } - \frac{1}{4} = t\]
\[ \Rightarrow dx = dt\]

\[Now, \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - \left( \frac{3}{4} \right)^2}\]
\[ = \frac{1}{2 \times \frac{3}{4}} \times \frac{1}{2} \text{ log }\left| \frac{t - \frac{3}{4}}{t + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log }\left| \frac{x - \frac{1}{4} - \frac{3}{4}}{x - \frac{1}{4} + \frac{3}{4}} \right| + C\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log } \left| \frac{x - 1}{x + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{2\left( x - 1 \right)}{2x + 1} \right| + C\]
\[ = \frac{1}{3} \left[ \text{ log }\left| \frac{\left( x - 1 \right)}{2x + 1} \right| + \text{ log }\left| 2 \right| \right] + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + \frac{1}{3} \text{ log }\left| 2 \right| + C\]
\[ = \frac{1}{3} \text{ log }\left| \frac{x - 1}{2x + 1} \right| + C' \left[ \because C' = \frac{1}{3} \text{ log } \left| 2 \right| + C \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.15 [Page 86]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.15 | Q 4 | Page 86

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \cot^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×