Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{1 + x - x^2}\]
\[ = \int\frac{- dx}{x^2 - x - 1}\]
\[ = \int\frac{- dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} - 1}\]
\[ = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \int\frac{dx}{\frac{5}{4} - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[\text{ let x }- \frac{1}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( \frac{\sqrt{5}}{2} \right)^2 - t^2}\]
\[ = \frac{1}{2 \times \frac{\sqrt{5}}{2}} \text{ log } \left| \frac{\frac{\sqrt{5}}{2} + t}{\frac{\sqrt{5}}{2} - t} \right| + C\]
\[= \frac{1}{\sqrt{5}} \text{ log}\left| \frac{\sqrt{5} + 2t}{\sqrt{5} - 2t} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} + 2\left( x - \frac{1}{2} \right)}{\sqrt{5} - 2\left( x - \frac{1}{2} \right)} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} - 1 + 2x}{\sqrt{5} + 1 - 2x} \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]