English

∫ 1 1 + X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]
Sum

Solution

\[\int\frac{dx}{1 + x - x^2}\]
\[ = \int\frac{- dx}{x^2 - x - 1}\]
\[ = \int\frac{- dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} - 1}\]
\[ = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \int\frac{dx}{\frac{5}{4} - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[\text{ let x }- \frac{1}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( \frac{\sqrt{5}}{2} \right)^2 - t^2}\]
\[ = \frac{1}{2 \times \frac{\sqrt{5}}{2}} \text{ log } \left| \frac{\frac{\sqrt{5}}{2} + t}{\frac{\sqrt{5}}{2} - t} \right| + C\]

\[= \frac{1}{\sqrt{5}} \text{ log}\left| \frac{\sqrt{5} + 2t}{\sqrt{5} - 2t} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} + 2\left( x - \frac{1}{2} \right)}{\sqrt{5} - 2\left( x - \frac{1}{2} \right)} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} - 1 + 2x}{\sqrt{5} + 1 - 2x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.15 [Page 86]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.15 | Q 3 | Page 86

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫   cos  3x   cos  4x` dx  

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \sin^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×