English

∫ Sin ( X − a ) Sin ( X − B ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
Sum

Solution

\[\text{Let I}= \int\frac{\sin\left( x - a \right)}{\sin\left( x - b \right)}dx\]
\[\text{Putting  x }- b = t \]
\[ \Rightarrow x = b + t\]
\[\text{and}\ dx = dt\]
`∴  I = ∫   sin( b + t - a ) / sin t  dt `
`∴  I = ∫   sin {( b-a )+t } / sin t  dt `


`∴  I = ∫   {sin( b - a )cos t}/sin t  +  ∫   {cos ( b  - a ) sin t} / sin t  dt `


\[ = \int\text{sin}\left( \text{b - a} \right)\text{cot t dt} + \int\text{cos}\left( b - a \right)dt\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin t} \right| + \text{t }\text{cos}\left( b - a \right) + C\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin}\left( \text{x - b }\right) \right| + \left( \text{x - b} \right)\text{cos}\left( \text{b - a} \right) + C   \left[ \because t = x - b \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 7 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \tan^4 x\ dx\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×