Advertisements
Advertisements
Question
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
Sum
Solution
\[\int\frac{x^2 - 1}{x^2 + 4}dx \]
\[ = \int\left( \frac{x^2 + 4 - 4 - 1}{x^2 + 4} \right)dx \]
\[ = \int\left( \frac{x^2 + 4}{x^2 + 4} \right)dx - 5\int\frac{dx}{x^2 + 2^2}\]
\[ = \int dx - 5\int\frac{dx}{x^2 + 2^2}\]
\[ = x - \frac{5}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C \left[ \therefore \int\frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{a}{b + c e^x} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`