Advertisements
Advertisements
प्रश्न
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
योग
उत्तर
\[\int\frac{x^2 - 1}{x^2 + 4}dx \]
\[ = \int\left( \frac{x^2 + 4 - 4 - 1}{x^2 + 4} \right)dx \]
\[ = \int\left( \frac{x^2 + 4}{x^2 + 4} \right)dx - 5\int\frac{dx}{x^2 + 2^2}\]
\[ = \int dx - 5\int\frac{dx}{x^2 + 2^2}\]
\[ = x - \frac{5}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C \left[ \therefore \int\frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \cot^5 x\ dx\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]