Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{\left( 2 - x \right)^2 + 1}}\]
\[\text{ let 2 }- x = t\]
\[ \Rightarrow - dx = dt\]
\[ \Rightarrow dx = - dt\]
\[Now, \int\frac{dx}{\sqrt{\left( 2 - x \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 + 1}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 + 1} \right| + C\]
\[ = - \text{ log }\left| \left( 2 - x \right) + \sqrt{\left( 2 - x \right)^2 + 1} \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`