Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{\sqrt{\left( 2 - x \right)^2 + 1}}\]
\[\text{ let 2 }- x = t\]
\[ \Rightarrow - dx = dt\]
\[ \Rightarrow dx = - dt\]
\[Now, \int\frac{dx}{\sqrt{\left( 2 - x \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 + 1}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 + 1} \right| + C\]
\[ = - \text{ log }\left| \left( 2 - x \right) + \sqrt{\left( 2 - x \right)^2 + 1} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ tan^3 x sec^2 x dx `
` ∫ tan^5 x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int \cos^5 x\ dx\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]