Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left[ \frac{x - 1}{\left( x - 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{x + 1 - 2}{\left( x + 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{1}{\left( x - 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx\]
\[\text{ Here}, f(x) = \frac{1}{\left( x + 1 \right)^2}\]
\[ \Rightarrow f'(x) = \frac{- 2}{\left( x + 1 \right)^2}\]
\[\text{ Put e}^x f(x) = t\]
\[\text{ let e}^x \frac{1}{\left( x + 1 \right)^2} = t\]
\[\text{ Diff both sides }\]
\[ e^x \frac{1}{\left( x + 1 \right)^2} + e^x \frac{\left( - 2 \right)}{\left( x + 1 \right)^3} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = \int dt\]
\[ = t + C\]
\[ = \frac{e^x}{\left( x + 1 \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]