मराठी

∫ E X X − 1 ( X + 1 ) 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{x - 1}{\left( x - 1 \right)^3} \right]dx\]

\[ = \int e^x \left[ \frac{x + 1 - 2}{\left( x + 1 \right)^3} \right]dx\]

\[ = \int e^x \left[ \frac{1}{\left( x - 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx\]

\[\text{ Here}, f(x) = \frac{1}{\left( x + 1 \right)^2}\]

\[ \Rightarrow f'(x) = \frac{- 2}{\left( x + 1 \right)^2}\]

\[\text{ Put e}^x f(x) = t\]

\[\text{  let e}^x \frac{1}{\left( x + 1 \right)^2} = t\]

\[\text{ Diff  both  sides }\]

\[ e^x \frac{1}{\left( x + 1 \right)^2} + e^x \frac{\left( - 2 \right)}{\left( x + 1 \right)^3} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = \int dt\]

\[ = t + C\]

\[ = \frac{e^x}{\left( x + 1 \right)^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 10 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×