मराठी

∫ X 9 ( 4 X 2 + 1 ) 6 D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

पर्याय

  • \[ \frac{1}{5x} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{5} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{10x} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

  • \[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

     

MCQ

उत्तर

\[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

 

\[\text{Let }I = \int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]
\[ = \int\frac{x^9}{x^{12} \left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[ = \int\frac{\frac{1}{x^3}}{\left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[\text{Let }\left( 4 + \frac{1}{x^2} \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ - \frac{2}{x^3}dx = dt\]
\[ \therefore I = - \frac{1}{2}\int\frac{1}{\left( t \right)^6}dt\]
\[ = - \frac{1}{2}\left( - \frac{1}{5} \right) t^{- 5} + C\]
\[ = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]
\[\text{Therefore, }\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 32 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×