Advertisements
Advertisements
प्रश्न
\[\int\sqrt{2ax - x^2} \text{ dx}\]
बेरीज
उत्तर
\[\text{ Let I }= \int\sqrt{2ax - x^2}\text{ dx}\]
\[ = \int\sqrt{a^2 + 2ax - x^2 - a^2}\text{ dx}\]
\[ = \int \sqrt{a^2 - \left( x^2 - 2ax + a^2 \right)}\text{ dx}\]
\[ = \int\sqrt{a^2 - \left( x - a \right)^2}\text{ dx}\]
\[ = \left( \frac{x - a}{2} \right) \sqrt{2ax - x^2} + \frac{a^2}{2} \sin^{- 1} \left( \frac{x - a}{a} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
` ∫ tan^5 x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]