मराठी

∫ 1 − Cos 2 X 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
बेरीज

उत्तर

\[\int\left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]

`=∫     (2 sin^2 x) / (  2 cos^2 x ) dx [∵ 1 - cos 2 θ = 2 sin^2 θ  & 1 + cos 2 θ= 2 cos^2 θ]`
\[ = \int \tan^2 \text{x dx} \]
\[ = \int\left( \sec^2 x - 1 \right) dx\]
\[ = \int \sec^2\text{ x  dx}  -  ∫ dx\]
\[ = \tan x - x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 26 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \sin^5 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \log_{10} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×