Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
बेरीज
उत्तर
\[\int\left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]
`=∫ (2 sin^2 x) / ( 2 cos^2 x ) dx [∵ 1 - cos 2 θ = 2 sin^2 θ & 1 + cos 2 θ= 2 cos^2 θ]`
\[ = \int \tan^2 \text{x dx} \]
\[ = \int\left( \sec^2 x - 1 \right) dx\]
\[ = \int \sec^2\text{ x dx} - ∫ dx\]
\[ = \tan x - x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int \sin^5 x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \log_{10} x\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .