Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{\ cosx}{\cos\left( x - a \right)}dx\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
` ∫ tan^5 x dx `
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`