मराठी

∫ X Cos 3 X 2 Sin X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
बेरीज

उत्तर

∫ x . cos3 x2 sin x2 dx
Let x2 = t
⇒​ 2x dx = dt

\[\Rightarrow \text{  x dx } = \frac{dt}{2}\]
\[Now, \int x . \cos^3 x^2 \sin x^2 dx\]
\[ = \frac{1}{2}\int \cos^3 t . \sin t . dt\]
\[\text{ Again let }\cos t = p\]
\[ \Rightarrow - \text{ sin t dt } = dp\]
\[ \Rightarrow \text{ sin t dt } = - dp\]
\[So, \frac{1}{2}\int \cos^3 t . \sin t . dt \]
\[ = - \frac{1}{2} p^3 \text{  dp }\]
\[ = - \frac{1}{2} \left( \frac{p^4}{4} \right) + C\]
\[ = - \frac{p^4}{8} + C\]
\[ = - \frac{\cos^4  t}{8} + C\]
\[ = - \frac{\cos^4 x^2}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.12 | Q 7 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×