मराठी

∫ ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 1 = \lambda\frac{d}{dx} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\]

\[\lambda + \mu = 1\]

\[ \Rightarrow \frac{1}{2} + \mu = 1\]

\[ \therefore \mu = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} dx\]

\[\text{ Let x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]

\[\text{ Then },\]

\[I = \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2}\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log  }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]
\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 7 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (3x +5)/(x^2+3x-18)dx.`


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×