मराठी

∫ X Sin X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin x \cos 2x\ dx\]
बेरीज

उत्तर

\[\int x . \cos 2x \text{ sin x dx }\]
\[ = \frac{1}{2} \int x \left( 2 \cos 2x \sin x \right) dx \left[ \because 2 \cos A \sin B = \sin \left( A + B \right) - \sin \left( A - B \right) \right]\]
\[ = \frac{1}{2} \int x \left( \sin 3x - \sin x \right) dx\]
\[ = \frac{1}{2} \int x . \text{ sin 3x dx }- \frac{1}{2} \int x \text{ sin x dx}\]
\[ = \frac{1}{2}\left[ x\int\text{ sin 3x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 3x dx} \right\}dx \right] - \frac{1}{2}\left[ x\int\text{ sin x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx }\right\}dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) - \int 1 . \left( \frac{- \cos 3x}{3} \right)dx \right] - \frac{1}{2}\left[ x . \left( - \text{ cos x} \right) - \int 1 . \left( - \cos x \right) dx \right]\]
\[ = \frac{1}{2}\left[ x . \left( \frac{- \cos 3x}{3} \right) + \frac{1}{9}\sin 3x \right] - \frac{1}{2}\left[ x . \left( - \cos x \right) + \sin x \right]\]
\[ = - \frac{x \cos 3x}{6} + \frac{\sin 3x}{18} + \frac{x \cos x}{2} - \frac{\sin x}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 50 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

`int"x"^"n"."log"  "x"  "dx"`

 
` ∫  x tan ^2 x dx 

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×