मराठी

∫ √ a 2 − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{a^2 - x^2}\text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\sqrt{a^2 - x^2} \text{  dx }\]
\[ = \int {1  _{II} \cdot} \sqrt{a^2 { _I} - x^2} dx\]
\[ = \sqrt{a^2 - x^2}_{} \int1 \text{  dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 - x^2} \right)\int1\text{  dx } \right)dx\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\frac{1 \times 2x}{2 \sqrt{a^2 - x^2}} \cdot x\text{  dx }\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{a^2 - x^2}} \right) dx\]
\[ = x\sqrt{a^2 - x^2} - \int\sqrt{a^2 - x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ = x\sqrt{a^2 - x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 - x^2} + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \left( \frac{x}{a} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 86 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×