Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\sqrt{a^2 - x^2} \text{ dx }\]
\[ = \int {1 _{II} \cdot} \sqrt{a^2 { _I} - x^2} dx\]
\[ = \sqrt{a^2 - x^2}_{} \int1 \text{ dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 - x^2} \right)\int1\text{ dx } \right)dx\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\frac{1 \times 2x}{2 \sqrt{a^2 - x^2}} \cdot x\text{ dx }\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{a^2 - x^2}} \right) dx\]
\[ = x\sqrt{a^2 - x^2} - \int\sqrt{a^2 - x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ = x\sqrt{a^2 - x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 - x^2} + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \left( \frac{x}{a} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ 1/ {1+ cos 3x} ` dx
Integrate the following integrals:
` ∫ tan x sec^4 x dx `
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]