मराठी

∫ X 4 + X 4 D X is Equal to (A) 1 4 Tan − 1 X 2 + C (B) 1 4 Tan − 1 ( X 2 2 ) (C) 1 2 Tan − 1 ( X 2 2 ) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

पर्याय

  • \[\frac{1}{4} \tan^{- 1} x^2 + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • \[\frac{1}{2} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • none of these

MCQ

उत्तर

 \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

\[\text{ Let  I } = \int\frac{x}{4 + x^4}dx\]

\[ = \int\frac{x \text{ dx}}{2^2 + \left( x^2 \right)^2}\]

\[\text{ Putting  x}^2 = t\]

\[ \Rightarrow 2x \text{ dx} = dt\]

\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{2^2 + t^2}\]

\[ = \frac{1}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{t}{2} \right) + C \left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} \right)\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right) + C \left( \because t = x^2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ १९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 1 | पृष्ठ १९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×