Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[\text{ Putting x} = a \tan \theta\]
\[ \Rightarrow dx = a \sec^2 \text{ θ dθ }\]
\[ \therefore I = \int\frac{a \cdot se c^2\text{ θ dθ }}{\sqrt{a^2 \tan^2 \theta + a^2}}\]
\[ = \int\frac{a \sec^2 \theta \cdot d\theta}{a\sqrt{1 + \tan^2 \theta}}\]
\[ = \int\frac{\sec^2 \theta \cdot \text{ dθ }}{\sec\theta}\]
\[ = \int\sec\theta \cdot d\theta\]
\[ = \int\sec\theta \cdot d\theta\]
\[ = \text{ ln } \left| \sec\theta + \tan\theta \right| + C\]
\[ = \text{ ln }\left| \sec\theta + \sqrt{\sec^2 \theta - 1} \right| + C\]
\[ = \text{ ln }\left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1} \right| + C\]
\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| - \ln a + C\]
\[ = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C'\]
\[\text{ where C' = C - ln a }\]
APPEARS IN
संबंधित प्रश्न
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]