मराठी

∫ 1 √ X 2 + a 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{dx}{\sqrt{x^2 - a^2}}\]

\[\text{ Putting  x} = a \tan \theta\]

\[ \Rightarrow dx = a \sec^2  \text{ θ   dθ }\]

\[ \therefore I = \int\frac{a \cdot se c^2\text{ θ   dθ }}{\sqrt{a^2 \tan^2 \theta + a^2}}\]

\[ = \int\frac{a \sec^2 \theta \cdot d\theta}{a\sqrt{1 + \tan^2 \theta}}\]

\[ = \int\frac{\sec^2 \theta \cdot \text{    dθ }}{\sec\theta}\]

\[ = \int\sec\theta \cdot d\theta\]

\[ = \int\sec\theta \cdot d\theta\]

\[ = \text{ ln } \left| \sec\theta + \tan\theta \right| + C\]

\[ = \text{ ln }\left| \sec\theta + \sqrt{\sec^2 \theta - 1} \right| + C\]

\[ = \text{ ln }\left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1} \right| + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| - \ln a + C\]

\[ = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C'\]

\[\text{ where C' = C -  ln  a }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 43 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 \text{ cos x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×