मराठी

∫ Sec − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sec^{- 1} \sqrt{x}\ dx\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \sec^{- 1} \sqrt{x} \text{ dx}\]

\[\text{ Putting } \sqrt{x} = \sec \theta\]

\[ \Rightarrow x = \sec^2 \theta\]

\[ \Rightarrow dx = 2 \text{ sec }\text{ θ } \text{ sec} \text{ θ  } \text{ tan   θ } \text{ dθ }\]

\[ = 2 \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ \therefore I = 2\int\theta \sec^2 \theta \text{ tan   θ } \text{ dθ }\]

\[ = 2 \int \theta\tan \theta \sec^2 \text{    θ } \text{ dθ }\]

\[\text{Considering}\text{  θ  as first fucction and} \tan \theta \sec^2 \ \text{theta as second function}\]

\[I = 2\left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]................ \left( \because \int\tan \theta \sec^2 \text{ tan   θ } \text{ dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta\]

\[ = \theta \tan^2 \theta - \tan \theta + \theta + C\]

\[ = \theta\left( 1 + \tan^2 \theta \right) - \tan \theta + C\]

\[ = \theta \sec^2 \theta - \sqrt{se c^2 \theta - 1} + C\]

\[ = \sec^{- 1} \sqrt{x} x - \sqrt{x - 1} + C\]

\[ = x \sec^{- 1} \sqrt{x} - \sqrt{x - 1} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 111 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{x^2 + 6x + 13} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×