मराठी

∫ 1 Sin X ( 3 + 2 Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{dx}{\sin x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\sin^2 x \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos^2 x \right) \left( 3 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 3 + 2 \cos x \right)}\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[ \therefore I = \int\frac{- dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 3 + 2t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3 + 2t}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)} = \frac{A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3 + 2t \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3 + 2t \right) + B \left( t - 1 \right) \left( 3 + 2t \right) + C \left( t + 1 \right) \left( t - 1 \right)\]
\[\text{Putting t + 1 = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = A \times 0 + B \left( - 2 \right) \left( 3 - 2 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( - 2 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[\text{Putting t - 1 = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 \right) + B \times 0 + C \times 0\]
\[ \Rightarrow A = \frac{1}{10}\]
\[\text{Putting 3 + 2t = 0}\]
\[ \Rightarrow t = - \frac{3}{2}\]
\[1 = A \times 0 + B \times 0 + C \left( - \frac{3}{2} + 1 \right) \left( - \frac{3}{2} - 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{2} \right) \left( - \frac{5}{2} \right)\]
\[C = \frac{4}{5}\]
Then,
\[I = \frac{1}{10}\int\frac{dt}{t - 1} - \frac{1}{2}\int\frac{dt}{t + 1} + \frac{4}{5}\int\frac{dt}{3 + 2t}\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{4}{5} \times \frac{\log \left| 3 + 2t \right|}{2} + C\]
\[ = \frac{1}{10} \log \left| t - 1 \right| - \frac{1}{2} \log \left| t + 1 \right| + \frac{2}{5}\log \left| 3 + 2t \right| + C\]
\[ = \frac{1}{10} \log \left| \cos x - 1 \right| - \frac{1}{2} \log \left| \cos x + 1 \right| + \frac{2}{5} \log \left| 3 + 2 \cos x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 60 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫      tan^5    x   dx `


` ∫    \sqrt{tan x}     sec^4  x   dx `


` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x e^x \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×